Error Estimates for Low-Order Isoparametric Quadrilateral Finite Elements for Plates
نویسندگان
چکیده
This paper deals with the numerical approximation of the bending of a plate modeled by Reissner-Mindlin equations. It is well known that, in order to avoid locking, some kind of reduced integration or mixed interpolation has to be used when solving these equations by finite element methods. In particular, one of the most widely used procedures is based on the family of elements called MITC (mixed interpolation of tensorial components). We consider two lowest-order methods of this family on quadrilateral meshes. Under mild assumptions we obtain optimal H1 and L2 error estimates for both methods. These estimates are valid with constants independent of the plate thickness. We also obtain error estimates for the approximation of the plate vibration problem. Finally, we report some numerical experiments showing the very good behavior of the methods, even in some cases not covered by our theory.
منابع مشابه
Stable Low Order Nonconforming Quadrilateral Finite Elements for the Stokes Problem
Stability result is obtained for the approximation of the stationary Stokes problem with nonconforming elements proposed by Douglas et al [1] for the velocity and discontinuous piecewise constants for the pressure on quadrilateral elements. Optimal order H and L error estimates are derived.
متن کاملA Class of Nonconforming Quadrilateral Finite Elements for Incompressible Flow∗
This paper focuses on the low-order nonconforming rectangular and quadrilateral finite elements approximation of incompressible flow. Beyond the previous research works [9, 8, 4], we propose a general strategy to construct the basis functions. Under several specific constraints, the optimal error estimates are obtained, i.e. the first order accuracy of the velocities in H-norm and the pressure ...
متن کاملTwo-Dimensional Fixed Grid Based Finite Element Structural Analysis
This paper introduces a new fixed mesh structural analysis technique based on isoparametric formulations from classic finite element analysis. Fixed mesh methods are popular in boundary based optimisation as they avoid mesh distortion problems and reanalysis is simple and efficient. The area ratio based fixed grid method is often employed due to its favourable simplicity in implementation. Howe...
متن کاملVibration and Stability of Axially Moving Plates by Standard and Spectral Finite Element Methods
Based on classical plate theory, standard and spectral finite element methods are extended for vibration and dynamic stability of axially moving thin plates subjected to in-plane forces. The formulation of the standard method earned through Hamilton’s principle is independent of element type. But for solving numerical examples, an isoparametric quadrilateral element is developed using Lagrange ...
متن کاملVibration and Stability of Axially Moving Plates by Standard and Spectral Finite Element Methods
Based on classical plate theory, standard and spectral finite element methods are extended for vibration and dynamic stability of axially moving thin plates subjected to in-plane forces. The formulation of the standard method earned through Hamilton’s principle is independent of element type. But for solving numerical examples, an isoparametric quadrilateral element is developed using Lagrange ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 41 شماره
صفحات -
تاریخ انتشار 2003